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Foundations of classical statistical thermodynamics

Outline

• Dynamical systems (v brief)
• Thermostats (v brief)

• Phase space and ensembles
• Liouville Equation

• Fluctuation Theorem and corollaries

• Dissipation Theorem
• Linear and nonlinear response theory, Green-Kubo relations

• Relaxation Theorem
• Derivation of the canonical (Maxwell-Boltzmann) equilibrium distribution 

function

• Connection with equilibrium Thermodynamics

• Nonequilibrium Free Energy Relations
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Foundations of classical statistical thermodynamics

Maxwell on the Second Law

Hence the Second Law of thermodynamics is continually being 
violated and that to a considerable extent in any sufficiently small 
group of molecules belonging to any real body.  As the number of
molecules in the group is increased, the deviations from the mean
of the whole become smaller and less frequent; and when the number is increased 
till the group includes a sensible portion of the body, the probability of a 
measurable variation from the mean occurring in a finite number of years becomes 
so small that it may be regarded as practically an impossibility.

J.C. Maxwell, Nature, 17, 278(1878)
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Foundations of classical statistical thermodynamics

Thermostatted Dynamical Systems (Evans & Hoover et. al 1980ʼs)

Typically we deal with adiabatic Hamiltonian N-particle systems (i=1,N) - W.R. Hamilton 1805-1865)

!

and often                                                                                                    .  Whereupon

We observe that

 

qi =
∂H(q,p)

∂p i

p i = − ∂H(q,p)
∂qi

 

qi =
p i
m

p i = − ∂Φ
∂qi

≡ Fi

  
Λad ≡ ∂

∂Γ
i Γ = 0

 H(Γ) ≡ H(q,p) ≡ H(q1,...qN,p1,...pN ) = K(p)+Φ(q)
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Foundations of classical statistical thermodynamics

Consider a system described by the time reversible thermostatted equations of motion (Hoover et al):

!
Example:

Sllod  NonEquilibrium Molecular Dynamics algorithm for shear viscosity - is exact for adiabatic flows.

which is equivalent to:

There is no Hamiltonian function that generates adiabatic SLLOD .

 

qi = p i / m +C i iFe

p i = Fi +D i iFe −αSipi : Si = 0,1; Si
i
∑ = Nres

 
qi =

Fi
m

+ iγδ(t)yi −α(q i − iγyi )

Example: Thermostatted SLLOD equations for planar Couette flow
(Evans and Morriss (1984))
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t =  0-

vx

  t = 0+

x

(y)vx (y)vx

(y)> = γyu =<vx x

vx x

 

The Sllod equations of motion are equivalent to Newton’s equations for t > 0+, with a linear 
shift applied to the initial x-velocities of the particles.

Therefore adiabatic Sllod is exact arbitrarily far from equilibrium.
6
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Lees-Edwards (1972) periodic boundary conditions for shear flow

= y

x

y ux γ

θ

L

L
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Foundations of classical statistical thermodynamics

How does the internal energy                            change under SLLOD?H0 ≡ K +Φ

 

Had
0 = p i i

∂K
∂p i

∑ + qi i
∂Φ
∂qi

= −iγ∑ pyi i
p i
m

− iγyi iFi

= −γ
pyipxi
m

+ yiFxi∑ ≡ −γPxyV

where Pxy is the xy-element of the pressure tensor.  At low strain rates we expect Newtonʼs Law (1687) of 
viscosity to hold namely,

lim
γ→0
Pxy (γ ) = −ηγ

where     is the so-called shear viscosity.η

8

Thursday, 5 May 2011



Foundations of classical statistical thermodynamics

If we add in the thermostatting terms then

 
H0 = −γPxyV− 2Kα

If we then choose the thermostat multiplier as

α = −γPxyV / 2K

and the internal energy will be a constant of the motion. This is called a Gaussian ergostat. (Evans and 
Hoover 1982).  These equations of motion can be derived from Gaussʼ Principle of Least Constraint (Gauss  
1829). Possible assessment topic. This multiplier could also be chosen to fix the kinetic energy of the 
system - Gaussian isokinetic thermostat.  On average the thermostat multiplier will be positive since 
viscous work is done on the system which is then converted into heat and removed by the thermostat.

In a nonequilibrium steady state time averages satisfy the equation:

 

H0 = −γPxyV− 2Kα = 0

=W+Q = work + heat

All equations of motion are time reversal symmetric - but more on this later!
9
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The concept of ensembles in statistical mechanics  (Boltzmann 1871, Maxwell 1879)

In a macroscopic thermal system we only control a few state variables: temperature or total energy, pressure 
or total volume, total mass or number of molecules.  To specify the microstate of a system     we need
               variables! Yet experience tells us that a specification of the few state variables is all we need to 
correctly predict macroscopic properties: specific heats viscosity etc.
O(NA)

 Γ

“I have found it convenient, instead of considering one system of material particles, to consider a large 
number of systems similar to each other in all respects, except the initial circumstances of the motion, which 
are supposed to vary from system to system, the total energy being the same in all.” (Maxwell 1879)
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• 	
 Let            be the total number of ensemble members inside an arbitrary phase space 
volume 

                                                          and       

the                is the phase space density at position     and time t. Since mass is 
conserved, the only way that the mass in the volume      can change is by flowing 
through the enclosing surface,        (see Figure below).

Since the volume is arbitrary,

                                                                          

This is Liouvilleʼs Theorem (1838)

 VΓ
M(t)

 
M(t) = dΓ f(Γ, t)

VΓ∫

 f(Γ, t)  Γ
 VΓ

 SΓ

  
dM(t)
dt

= − dSΓSΓ∫ f(Γ, t) Γ(Γ, t) = dΓ
VΓ∫

∂
∂Γ

i[ Γf(Γ, t)]

 
dM
dt

= dΓ ∂f(Γ, t)
∂tVΓ∫

  
∂f(Γ, t)

∂t
= − ∂

∂Γ
i[ Γf(Γ, t)]

Liouvilleʼs Theorem (1838)
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14                                                             STATISTICAL MECHANICS OF NONEQUILIBRIUM LIQUIDS 

 

 

 

dM

dt
= dr

!"(r, t)

!tV
#  (2.3) 

 

If we equate these two expressions for the rate of change of the total mass we find that since 

the volume V  was arbitrary, 

 

 

 

!"(r, t)

!t
= #$ % "(r, t)u(r,t)[ ]  (2.4) 

 

This is called the mass 

continuity equation and is 

essentially a statement 

that mass is conserved. 

We can write the mass 

continuity equation in an 

alternative form if we use 

the relation between the 

total or streaming 

derivative, and the 

various partial 

derivatives. For an 

arbitrary function of 

position r and time 

 

t , for example a(r, t) , we have 

 

 

 

d

dt
a(r, t) =

!

!t
a(r, t) + u " #a(r,t) (2.5) 

 

If we let a(r, t) ! "(r, t)  in equation (2.5), and combine this with equation (2.4) then the mass 

continuity equation can be written as 

 

 

 

d!(r, t)

dt
= "!(r,t)# $ u(r, t)  (2.6) 

 

In an entirely analogous fashion we can derive an equation of continuity for momentum. Let 

G(t)  be the total momentum of the arbitrary volume V , then the rate of change of momentum 

is given by 

 

 

 

dG

dt
= dr

V
!

" #(r, t)u(r,t)[ ]
"t

 (2.7) 

 

  

Figure 2.1. The change in the mass contained in an arbitrary closed volume 

 

V  can be calculated by integrating the mass flux through the enclosing 

surface 

 

S , 

 

dM dt = ! dS " #u(r, t)$ . 

This diagram is for the analogous mass continuity equation.
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Liouvilleʼs Theorem (contd)

  
df
dt

= ∂f
∂t

+ Γi
∂f
∂Γ

= −f ∂
∂Γ

i Γ

The chain rule gives:

For adiabatic Hamiltonian systems

df
dt

= 0

while for thermostatted Hamiltonian systems (AI      e.g. thermostatted SLLOD) Γ

 
df
dt

= −fΛ = +3Nresα(t)f(Γ, t)
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Fluctuation Theorem (Roughly).

The first statement of a Fluctuation Theorem was given by Evans, Cohen & 
Morriss, 1993.  This statement was for isoenergetic nonequilibrium steady 
states.

If  ! ! ! is total (extensive) irreversible entropy 

production rate/      and its time average is:! !       , then

Formula is exact if time averages (0,t) begin from the initial phase         , 
sampled from a given initial distribution                  . It is true 
asymptotically           , if the time averages are taken over steady state 
trajectory segments. The formula is valid for arbitrary external fields,     .

p(Σ t = A)
p(Σ t = −A)

= exp[At]

Σ t ≡ (1 t) ds
0

t

∫ Σ(s)

� 

kB

� 

Γ(0)

Σ = −βJFeV = dV
V
∫ σ(r) / kB

t→∞

� 

Fe

f(Γ(0),0)
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Evans, Cohen & Morriss, PRL, 71, 2401(1993).

P xy,t

p(P xy, t )

ln
p( P xy,t = A)

p(P xy ,t = −A)
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= −βAγVt
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Why are the Fluctuation Theorems important?

• Show how irreversible macroscopic behaviour arises from time reversible dynamics.
• Generalize the Second Law of Thermodynamics so that it applies to small systems observed for short 

times.
• Imply the Second Law InEquality .
• Are valid arbitrarily far from equilibrium regime
• In the linear regime FTs imply both Green-Kubo relations and the Fluctuation dissipation Theorem.
• Are valid for stochastic systems (Lebowitz & Spohn, Evans & Searles, Crooks).
• New FTʼs can be derived from the Langevin eqn (Reid et al, 2004).
• A quantum version has been derived (Mukamel, Monnai & Tasaki), .
• Apply exactly to transient trajectory segments (Evans & Searles 1994) and asymptotically for steady 

states (Evans et al 1993)..
• Apply to all types of nonequilibrium system: adiabatic and driven nonequilibrium systems and relaxation 

to equilibrium (Evans, Searles & Mittag).
• Can be used to derive nonequilibrium expressions for equilibrium free energy differences (Jarzynski 

1997, Crooks).
• Place (thermodynamic) constraints on the operation of nanomachines.

Ωt ≥ 0, ∀t,N

16
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The Liouville equation is analogous to the mass continuity equation in fluid mechanics.

!

or for thermostatted systems, as a function of time, along a streamline in phase space:

! !

Λ is called the phase space compression factor and for a system in 3 Cartesian dimensions

The formal solution is:

!  "

 

∂f(Γ, t)
∂t

= −
∂
∂Γ

i[ Γf(Γ, t)] ≡ −iLf(Γ, t)

 

df(Γ, t)
dt

= [ ∂
∂t

+ Γ(Γ)i ∂
∂Γ
]f(Γ, t) = −f(Γ, t)Λ(Γ), ∀Γ, t

f(Γ(t), t) = exp[− ds
0

t

∫ Λ(Γ(s))]f(Γ(0),0)

Λ(Γ) = −3Nresα(Γ)
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More on Thermostats

Deterministic, time reversible, homogeneous thermostats were simultaneously but independently 
proposed by Hoover and Evans in 1982. Later we realised that the equations of motion could be derived 
from Gauss' Principle of Least Constraint (Evans, Hoover, Failor, Moran & Ladd (1983)).

The form of the equations of motion is

!

α can be chosen such that the energy is constant or such that the kinetic energy is constant. In the latter 
case the equilibrium, field free distribution function can be proved to be the isokinetic distribution, 

In 1984 Nosé showed that if α is determined as the time dependent solution of the equation

!

then the equilibrium canonical distribution 

f(Γ) ~ exp[−H0(Γ ) / kBT]

 

qi =
p i
m +Ci (Γ)iFe

p i = Fi (q) +Di (Γ)iFe − Siα(Γ)p i

f(Γ) ~ δ( pi
2 / 2m

wall
∑ − 3NkBT / 2)exp[−Φ(q) / kBT]

dα
dt

= pi
2 / 2m

wall
∑⎛⎝⎜

⎞
⎠⎟
/ 3NwallkBT / 2( ) −1⎡

⎣
⎢

⎤

⎦
⎥ / τ

2

is preserved by the equations of motion.
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Aside:  -  Thermostats and Equilibrium

Consider “µ” thermostats described by the equations of motion:

  

where Einstein notation is used,                  ,   is the position of the i-th particle in the δ-direction,       is the 
momentum of the ith particle in the  δ-direction,            and             couple the system with the external field,   

At           :
• all µ-thermostats that violate Gauss Principle do not generate an equilibrium state and,

• among  µ-thermostats that satisfy Gauss's Principle to fix the µ+1 moment of the velocity distribution, only 
the conventional Gaussian isokinetic thermostat (µ=1) possesses an equilibrium state.

 

qiδ =
piδ
m

+CiδγFeγ

piδ = Fiδ + DiδγFe γ − α piδ
µ−1piδ

δ,γ = x,y,z
Ciδγ (Γ ) Diδγ (Γ)

piδ
Feγ

Feγ = 0
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Time reversibility
Consider an arbitrary phase function B.

  dB(Γ) / dt = Γi∂B/ ∂Γ ≡ iL(Γ)B(Γ)

The formal solution via infinite order Taylor series is,

 B(Γ(t)) = exp[+iL(Γ(0))t]B(Γ(0))

(Prove by differentiation.)  Now consider a time reversal mapping

 M
T[B(Γ)] =MT[B(q,p)] ≡ B(q,−p)

The phase variable B at time t can be retraced back to time zero by applying the inverse 
propagator (ie reversing the direction of time).

exp[−iLt]B(t) = exp[−iLt]exp[iLt]B(0) = B(0)

Since                                              we can also return to the origin by applying the time 
reversal mapping but always going forward in time.

 M
TeiLtMTeiLtΓ(0) =MTeiLtMTΓ(t) = e− iLtΓ(t) = Γ(0)

 M
TiL(Γ) = −iL(Γ)MT

Such dynamics is called time reversal symmetric dynamics.
20
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Thomson on reversibility

The instantaneous reversal of the motion of every moving 
particle of a system causes the system to move backwards
each particle along its path and at the same speed as before…

W. Thomson (Lord Kelvin) 1874
(cp J. Loschmidt 1878)
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The Loschmidt Demon applies 
a time reversal mapping: 

Γ = (q,p)→Γ∗ = (q,−p )

Loschmidt Demon

22
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Phase Space and reversibility

23
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We know that

The dissipation function is in fact a generalised irreversible entropy production - see below.

dsΩ(Γ(s)
0

t

∫ ) ≡ ln f(Γ(0),0)
f(Γ(t),0)

⎛
⎝⎜

⎞
⎠⎟
− Λ(Γ(s))ds

0

t

∫

=Ωt t ≡ Ωt

p(δVΓ (Γ(0),0))
p(δVΓ (Γ

* (0),0))
=
f(Γ(0),0)δVΓ (Γ(0),0)
f(Γ* (0),0)δVΓ (Γ

* (0),0)

= f(Γ(0),0)
f(Γ(t),0)

exp − Λ(Γ(s))ds
0

t

∫⎡
⎣⎢

⎤
⎦⎥

= exp[Ωt (Γ(0))]

The Dissipation function is defined as: (Searles & Evans 2000)

 

Assumptions :
• If f(Γ(0),0) ≠ 0 then
f(Γ(t),0) ≠ 0.

• Also f(Γ,0) = f(MT(Γ),0)

24
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Choose

!

So we have the Transient Fluctuation Theorem (Evans and Searles 1994)

!

The derivation is complete. ln
p(Ωt = A)
p(Ωt = −A)

= At

Evans Searles TRANSIENT FLUCTUATION THEOREM

p(δVΓ (Γ(0),0;Ωt (Γ(0)) = A))
p(δVΓ (Γ

*(0),0))
= f(Γ(0),0)δVΓ (Γ(0))
f(Γ*(0),0)δVΓ (Γ

*(0))

= f(Γ(0),0)
f(Γ(t),0)

exp − Λ(Γ(s))ds
0

t

∫⎡
⎣⎢

⎤
⎦⎥

= exp[Ωt (Γ(0))] = exp[At]

δVΓ (Γ(0),0;Ωt (Γ(0)) = A ± δA)
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FT for different ergodically consistent bulk ensembles driven by a dissipative field, Fe 
with conjugate flux J. 

Isokinetic or Nose-Hoover dynamics/isokinetic or canonical ensemble 

 

Isoenergetic dynamics/microcanonical ensemble

! !    ! or!

(Note: This second equation is for steady states, the Gallavotti-Cohen form for the FT (1995).)

Isobaric-isothermal dynamics and ensemble.

(Searles & Evans  , J. Chem. Phys.,  113, 3503–3509 (2000))

ln
p(Jt = A)
p(Jt = −A)

= −AtFeβV −JFeV ≡ dH0
ad

dt

ln
p(Jβt = A)
p(Jβ t = −A)

= −AtFeV ln
p(Λt = A)
p(Λ t = −A)

= −At −JFeV ≡ dH0
ad

dt

ln
p(Jt = A)
p(Jt = −A)

= −AtFeβV −JFeV ≡ dI 0
ad

dt

Ωt = Σ t = −βJtVFeIn each of these cases

26

Thursday, 5 May 2011



If the equations of motion are isokinetic Sllod

Foundations of classical statistical thermodynamics

 

qi =
p i
m

+ iγyi

p i = Fi − iγpyi − αpi

Dissipation function for shear flow in the canonical ensemble

and the initial ensemble is canonical (We will have more to say about the canonical distribution later.)

 
f(Γ,0) = δ[K(p)− 3Nβ−1 / 2]exp[−βH0(Γ)]

dΓ δ[K(p)− 3Nβ−1 / 2]exp[−βH0(Γ)]∫

you can prove that the dissipation function is (to leading order in N) - Assignment 2.

 
Ωt (Γ) = −β ds

0

t

∫ Pxy (Γ(s))γV

Note:  Γ ≡ Γ(0)
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Consequences of the FT

Connection with Linear irreversible thermodynamics

In thermostatted canonical systems where dissipative field is constant, 

!

So in the weak field limit (for canonical systems) the average dissipation function is equal to the “rate of 
spontaneous entropy production” - as appears in linear irreversible thermodynamics.  Of course the TFT 
applies to the nonlinear regime where linear irreversible thermodynamics does not apply.

Σ = − J FeV / Tsoi
= − J FeV / Tres + O(Fe

4 )

= Ω +O(F
e

4 )
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The Integrated Fluctuation Theorem (Ayton, Evans & Searles, 2001).

If            denotes an average over all fluctuations in which the time integrated entropy production is positive, 
then,

gives the ratio of probabilities that the Second Law will be satisfied rather than violated. The ratio becomes 
exponentially large with increased time of violation, t, and with system size (since Ω is extensive).  

... Ω t >0

p(Ωt > 0)
p(Ωt < 0)

⎡

⎣
⎢

⎤

⎦
⎥ = e−Ωt t

Ωt >0

−1
= e−Ωt t

Ωt <0
>1

29
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The Second Law Inequality

If              denotes an average over all fluctuations in which the time integrated entropy production is positive, 
then,

If the pathway is quasi-static (i.e. the system is always in equilibrium): 

The instantaneous dissipation function may be negative.  However its time average cannot be negative.
Note we can also derive the SLI from the Crooks Equality - later.

... Ω t >0

(Searles & Evans 2004).

Ωt = Ap(Ωt = A)( )dA
−∞

∞

∫
= Ap(Ωt = A)−Ap(Ωt = −A)( )dA

0

∞

∫
= Ap(Ωt = A)(1− e−At )( )dA

0

∞

∫
= Ωt (1− e−Ωt t )

Ωt >0
≥ 0, ∀ t > 0

Ω(t) = 0, ∀t
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The NonEquilibrium Partition Identity (Carberry et al 2004).

For thermostatted systems the NonEquilibrium Partition Identity (NPI) was first proved for 
thermostatted dissipative systems by Evans & Morriss (1984). It is derived trivially from the TFT.

NPI is a necessary but not sufficient condition for the TFT.  

exp(−Ωt t) = dA p(Ω t = A)exp(−At)−∞

+∞

∫

= dA p(Ω t = −A)
−∞

+∞

∫

= dA p(Ω t = A)−∞

+∞

∫ = 1

exp(−Ωt t) = 1

31
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We expect that if the statistical properties of steady state trajectory segments are independent of the particular 
equilibrium phase from which they started (the steady state is ergodic over the initial equilibrium states), we 
can replace the ensemble of steady state trajectories by trajectory segments taken from a single (extremely 
long) steady state trajectory.

This gives the Evans-Searles Steady State Fluctuation Theorem

lim
t→∞

Pr(Ω
t

ss = A)
Pr(Ωt

ss = −A)
= exp[At+ O(1)]

= exp[At], since At = O(t1/2 )

Steady State ESFT

lim
t→∞

Pr(Ω
t

ss = A)
Pr(Ωt

ss = −A)
= exp[At]

32
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f(Γ(0), t) = e
ds

0

t

∫ Ω(Γ(s− t ))
f(Γ(0),0)

= e
− dτ

0

− t

∫ Ω(Γ(τ))
f(Γ(0),0)

 Γ(t)

Foundations of classical statistical thermodynamics

The Dissipation Theorem (Evans et.al. 2008)

From the streaming version of the Liouville equation

Then from the definition of the dissipation function

Substituting gives

 f(Γ(t), t) = e
− ds

0

t

∫ Λ(Γ(s))
f(Γ(0),0)

 f(Γ(t), t) = e
ds

0

t

∫ Ω(Γ(s))
f(Γ(t),0), ∀Γ(t)

Realising that         , is just a dummy variable

 f(Γ(0),0) = f(Γ(t),0)e
ds

0

t

∫ [Ω(s)+Λ(s)]
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Foundations of classical statistical thermodynamics

 
exp(−Ωt t) = dΓ∫ exp[− ds

0

t

∫ Ω(Γ(s))]f(Γ,0) = 1, ∀t

An aside on normalisation

 
dΓ∫ exp[− ds

0

− t

∫ Ω(Γ(s))]f(Γ,0) = dΓ∫ f(Γ, t) = 1, ∀t

The distribution function is normalized. This is in spite of the fact that 
from the Second Law Inequality:

In nonequilibrium steady states the distribution collapses towards a 
strange attractor that covers almost all of phase space.

From the nonequilibrium partition identity:

 
dΓ∫ ds

0

t

∫ Ω(Γ(s))]f(Γ,0) = Ωt ≥1, ∀t

34
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B(t) = B(0) f(Γ,0) + ds

0

t

∫ Ω(0)B(s) Fe ,f (Γ,0)

lim
Fe→0

B(t) = B(0) −βVFe ds
0

t

∫ J(0)B(s) Fe=0

B(t) = B(0) −βVFe ds
0

t

∫ J(0)B(s) Fe

Foundations of classical statistical thermodynamics

The Dissipation Theorem - cont.

Evans et al. J Chem Phys,, 128, 014504, (2008)

This is an exceedingly general form of the Transient Time Correlation Function 
expression for the nonlinear response (Evans &Morriss 1984). If the initial distribution is 
preserved by the field free dynamics,

that can be linearized to give the Green-Kubo (1957) expression for the limiting 
linear response,

 B(t) = dΓ(0) B(Γ(0)∫ e
− dτ

0

− t

∫ Ω(Γ(τ))
f(Γ(0),0)

 

d B(t) / dt = dΓ(0) B(Γ(0)∫ Ω(Γ(−t))f(Γ(0), t)

= dΓ(0) B(Γ(t)∫ Ω(Γ(0))f(Γ(0),0)
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Consider a field free dynamics with a subset of thermostatted particles

Foundations of classical statistical thermodynamics

The Relaxation Theorem  (Evans et.al. 2009)

with

and the momentum of the thermostatted particles sums to zero. This 
dynamics implies that when 

There is no dissipation:
And from the dissipation theorem this distribution is preserved by the 
dynamics.

 

qi =
p i
mi

p i = Fi (q)− Si(αp i + γ th )
Kth ≡ Si

pi
2
i

2mii=1

N

∑ = cons

f(Γ,0) ≡ fC(Γ,0) =
δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)]
dΓ δ(Kth −K0 )∫∫ δ(p th )exp[−β thH0 (Γ)]

Kth = (3Nth − 4)β th
−1 ≡ K0

ΩC(Γ) = 0, ∀Γ
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Foundations of classical statistical thermodynamics

The Relaxation Theorem - cont.

From the definition of dissipation integral,

 
Ωt (Γ(0)) = β th[H0 (Γ(t))−H0(Γ(0))]+ ds

0

t

∫ (3Nth − 4)α(s)

From the dynamics

 
β th[H0 (Γ(t))−H0(Γ(0))] = −2Kthβ th ds

0

t

∫ α(s)

So if  (this is called an equipartition relation)

Kth =
(3Nth − 4)β th

−1

2
≡ (3Nth − 4)kBTth

2

there is no dissipation anywhere in phase space

 Ωt (Γ(0)) = 0,∀Γ(0), t.
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Foundations of classical statistical thermodynamics

Consider a deviation from the canonical distribution

For this distribution the dissipation function is

Unless g is a constant of the motion, the dissipation theorem implies this 
distribution function is not preserved.

For ergodic systems a time independent, dissipationless distribution is unique 
and is called an equilibrium canonical distribution function.

 Ωt (Γ(0))t = γ[g(Γ(t))− g(Γ(0))] ≡ γΔg(Γ(0), t)

 f(Γ, t) = exp[−γΔg(Γ,−t)]f(Γ,0)

f(Γ,0) ≡ δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)− γg(Γ)]
dΓ∫ δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)− γg(Γ)]
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Foundations of classical statistical thermodynamics

Further, the dissipation function satisfies the Second Law Inequality ,

This inequality is somewhat analogous to the Boltzmann H-theorem.

Thus if the initial distribution differs from the canonical distribution there 
will always be dissipation and on average this dissipation is positive.  This 
remarkable result is true for arbitrary g - provided it is an even function of 
the momenta.

Using the Dissipation Theorem and the Second Law Inequality we see that:

γ Δg(Γ, t) f (Γ ,0) = A(1− e−A )p(γΔg(Γ, t) = A)dA
0

∞

∫

≥ 0, ∀t, f(Γ,0)
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Foundations of classical statistical thermodynamics

We assume that at sufficiently long time there is a decay of correlations

where we have used the fact that g is an even function of the momenta and 
hence                       showing that the last term on the first line is zero.

So for sufficiently long times there is no dissipation and the system must be in 
its unique equilibrium state. 

This completes the proof of the Relaxation Theorem.

 

g(t) f (Γ ,0) = g(0) f(Γ ,0) + γ ds
0

tc∫ g(0)g(s) f(Γ ,0) + γ ds
tc

t

∫ g(0) f(Γ ,0) g(s) f(Γ ,0)

= g(0) f(Γ ,0) + γ ds
0

tc∫ g(0)g(s) f(Γ ,0)
= g(tc ) f (Γ ,0)

 
g(0) f(Γ ,0) = 0

lim
t→∞

d
dt
g(t) f (Γ ,0) = 0
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A(T = Tth ,N,V) = Q(Tth ,N,V)

≡ −kBTth ln dΓ∫∫ δ(Kth −K0 )δ(p th )exp[−β thH0 (Γ)]⎡
⎣

⎤
⎦

H0 = Q − Tth
∂Q
∂Tth

Foundations of classical statistical thermodynamics

Connection with thermodynamics
We postulate that

From classical thermodynamics U = A − T ∂A
∂T

Whereas if we differentiate Q with respect to  Tth,

Noting that when T = Tth = 0, that A(0) = U(0) = <H0(0)> = Q(0), we 
observe that A and Q satisfy the same differential equation with the same 
initial condition, and hence our postulate is proven.
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Foundations of classical statistical thermodynamics

Equilibrium Helmholtz free energy differences can be computed nonequilibrium thermodynamic path 
integrals. For nonequilibrium isothermal pathways between two equilibrium states

implies,

NB !                   is the difference in Helmholtz free energies, and if !        then JE  =  KI

pF (ΔW = B)
pR (ΔW = −B)

= exp[−β(ΔΑ− B)]

NonEquilibrium Free Energy Relations

Jarzynski Equality (1997).

exp[−βΔW] F = exp[−βΔΑF ]

f(Γ, 0) ∼ exp[−βH1(Γ)]→ f(Γ, t) ∼ exp[−βH2 (Γ)]

βΔW(t) ≡ β[H2 (t) − H1(0)]− dsΛ(s)
0

t

∫

Crooks Equality (1999).

ΔA = A2 −A1 ΔA = 0
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Foundations of classical statistical thermodynamics

43

Evans, Mol. Phys., 20, 1551(2003)

 H(Γ)= (1− λ)H1(Γ)+ λH2 (Γ)

λ(t ) 1

 
WF (t)

ΔWF = B(t)

ΔWR = −B(t)

 dΓ1(0)

 dΓ1(t)

 dΓ
*
1(t) ≡ dΓ2

* (0)

 dΓ2
* (t ) = dΓ*

1(0)

τ

P1→2 (ΔW(Γ1) = B)
P2→1(ΔW(Γ

2

* ) = −B)
= exp[−β((A2 − A1) − B)] ⇒ exp[−βΔW F = exp[−βΔA]

Crooks-Jarzynski Schematic
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Foundations of classical statistical thermodynamics

Jarzynski Equality proof:

 

exp[−βΔW(Γ1(0))] 1→2 = dΓ1(0)∫ f1(Γ1(0),0)exp[−β[H2(Γ1(t))−H1(Γ1(0))]+ dsΛ(Γ(s))
0

t

∫ ]

= dΓ1(0)∫ f1(Γ1(0),0)
f2 (Γ 2 (0),0)dΓ 2 (0)z2
f1(Γ1 (0),0)dΓ1 (0)z1

, NB Γ2 (0) ≡ Γ1(t)

= z2
z1

dΓ 2 (0)∫ f2 (Γ 2 (0),0) = exp[−β(A2 − A1)]

P1→2 (ΔW(Γ1 ) = B)
P2→1(ΔW(Γ 2

* ) = −B)
=
feq,1(Γ1 , 0)dΓ1
feq,2 (Γ 2

* , 0)dΓ 2
*

= exp[βΔWF (Γ1 )]
z2
z1

= exp[β(B− (A2 − A1))]

Crooks proof:

systems are deterministic and canonical
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Foundations of classical statistical thermodynamics

Proof of generalized Jarzynski Equality.

 

exp[ΔXτ (Γ)] ≡
Pr1,eq (Γ0 ,δΓ0 )Z(λ1 )
Pr2,eq (Γτ ,δΓτ )Z(λ2 )

=
f1,eq (Γ0 )δΓ0Z(λ1 )
f2,eq (Γτ )δΓτZ(λ2 )

For any ensemble we define a generalized “work” function as:

We observe that the modulus of the Jacobian gives the volume ratio:

 

∂Γτ

∂Γ0
=
δΓτ

δΓ0
=
f1(Γ0 , 0)
f1(Γτ ,τ)
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Foundations of classical statistical thermodynamics

We now compute the expectation value of the generalized work.

If the ensembles are canonical and if the systems are in contact with heat 
reservoirs at the same temperature

 

exp[−ΔXτ (Γ)] = dΓ0f1(Γ0 )∫
f2 (Γτ )δΓτZ(λ2 )
f1(Γ0 )δΓ0Z(λ1 )

=
Z(λ2 )
Z(λ1 )

dΓτf2 (Γτ )∫ =
Z(λ2 )
Z(λ1 )

 

⇒ΔXτ (Γ) = β(H2 (Γτ ) − H1(Γ0 )) − βΔQτ (Γ0 )

= βΔWτ (Γ0 ) QED

 

exp[−ΔXτ (Γ)] 1,eq = dΓ0f1,eq (Γ0 )∫
f2,eq (Γτ )δΓτZ(λ2 )
f1,eq (Γ0 )δΓ0Z(λ1 )

=
Z(λ2 )
Z(λ1 )

dΓτf2,eq (Γτ )∫ =
Z(λ2 )
Z(λ1 )
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Foundations of classical statistical thermodynamics

47

Further comments on thermostats

Tth  is the so-called kinetic temperature of the thermostat. If the thermostat 
has a comparable number of degrees of freedom to the system of interest, 
the thermostat like the system of interest, may be far from equilibrium.  
Thus the thermodynamic temperature would be undefined. However the 
Fluctuation and Dissipation Theorems remain valid!  

In a thought experiment we can move the thermostat arbitrarily far from the 
system of interest and simultaneously greatly increase the number of 
degrees of freedom in the thermostat.  In the limit, the thermostat can be 
viewed as being in thermodynamic equilibrium.  In this case the details of 
the thermostat are unimportant and the kinetic temperature of the 
thermostat becomes the true thermodynamic temperature of the thermostat.

The dissipation function thus becomes nonlocal: the quotient of the work 
done on the system of interest and the equilibrium thermodynamic 
temperature of the remote thermostat.
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